Based on the provided data, this endpoint predicts the in-sample period (historical period) values of multiple time series at once. It takes a JSON as an input containing information like the series frequency and historical data. (See below for a full description of the parameters.) The response contains the predicted values for the historical period. Usually useful for anomaly detection. Get your token for private beta at https://dashboard.nixtla.io.
HTTPBearer
The frequency of the data represented as a string. 'D' for daily, 'M' for monthly, 'H' for hourly, and 'W' for weekly frequencies are available.
Model to use as a string. Common options are (but not restricted to) timegpt-1 and timegpt-1-long-horizon. Full options vary by different users. Contact [email protected] for more information. We recommend using timegpt-1-long-horizon for forecasting if you want to predict more than one seasonal period given the frequency of your data.
A boolean flag that indicates whether the API should preprocess (clean) the exogenous signal before applying the large time model. If True, the exogenous signal is cleaned; if False, the exogenous variables are applied after the large time model.
ID of previously finetuned model
A list of values representing the prediction intervals. Each value is a percentage that indicates the level of certainty for the corresponding prediction interval. For example, [80, 90] defines 80% and 90% prediction intervals.
10 <= x < 100Compute the exogenous features contributions to the forecast.
Successful Response
x >= 0x >= 0x >= 0